
1

Building QuakeSim Portlets with GTLAB
Mehmet A. Nacar

1, 2
, Marlon E. Pierce

1
, Andrea Donnellan

3
, Geoffrey C. Fox

1, 2

1
Community Grids Lab, Indiana University

501 N. Morton St. Suite 224 Bloomington, IN 47404 USA

2
The Department of Computer Science, Indiana University

 Lindley Hall Bloomington, IN 47404 USA

3
Science Division, Jet Propulsion Laboratory

California Institute of Technology Pasadena, CA 91109 USA

{mnacar, marpierc, gcf}@indiana.edu, donnellan@jpl.nasa.gov

Abstract

The QuakeSim portal is a problem solving

environment to develop a solid Earth science

framework for modelling and understanding

earthquakes. In this study, we proposed an

evolutionary approach to allow TeraGrid usage

in addition to our own clusters for QuakeSim

portal. Our approach is based on our Grid Tag

Libraries and Beans (GTLAB) libraries, which

encapsulate common Grid operations with

reusable XML tags. GTLAB enables rapid

development of grid portlets rather than typical

portlet development techniques. Although it adds

a new layer to programming stack, our

experiments show that the performance delay is

tolerable in Web applications.

Keywords: Grid portals, QuakeSim portlets,

Discloc, Simplex

1. Introduction

The QuakeSim portal is a problem solving

environment to develop a solid Earth science

framework for modelling and understanding

earthquake and tectonic processes. The multi-

scale nature of earthquakes requires integrating

many data types and models to fully simulate and

understand the earthquake process. The

QuakeSim gateway includes portlets and services

for accessing real time and archival data. The

data sources (Global Positioning System data,

earthquake fault models) can be integrated with

computational applications for event detection

and seismic deformation calculations. These

latter include finite element methods (GeoFEST

[1]) that can be computationally intensive and

best run on parallelized platforms. In this study,

we aim to utilize TeraGrid [2] resources to solve

computational problems of QuakeSim project [3].

Grid portals are essential part of science

applications on the web. In the last decade, there

are many efforts to build Grid computing

environments. These are summarized in [4]. Grid

portals are gateways to scientific data and

applications that facilitate user-friendly interfaces

and enable access to data and metadata. TeraGrid

is a well known Grid service provider and Virtual

Organization[5].

Applications ranging from life sciences to

space exploration are accessible by science

gateways that serve many education levels in the

community. Examples of our work include the

QuakeSim [6] portal for earthquake modelling

and VLab [7] portal for material science for Earth.

In this study, we will focus on QuakeSim portal

as specific motivating use case for our work.

Grid portal development depends upon a

complicated distributed computing stack. There

are several layers of tooling that research groups

work on including Grid service implementations,

Grid service programming interfaces, Web

service interfaces and providers, portlet

development tools, portal framework support

tools, credential management support tools, and

grid account management tools. In this paper we

will concentrate on portlet development category.

GTLAB is one of our previous efforts to enable

rapid development of Grid portals [8].

The QuakeSim portal has served the

community since 2002 and is currently

undergoing several major revisions. In terms of

using the portal frameworks, it initially used the

2

Jetspeed [9] framework. It has subsequently been

updated to use the standard compliant, second

generation portal framework GridSphere [10],

which is compatible with JSR 168 portlet

specification [11]. In its current form, the

QuakeSim portal uses portlets developed with the

Java Server Faces (JSF) [12] web application

development framework. JSF is component and

tag based, and allows extensions. QuakeSim

portlets are typically designed as clients to remote

Web services that constitute the QuakeSim

middleware. These portlets aggregate user

information and data through JSF interfaces and

invoke the actions matching the Web services.

QuakeSim services use Apache Ant [13] based

services to manage jobs and to build multiple

steps of jobs that depend each other (i.e., to

handle simple workflows).

QuakeSim’s computational services are suitable

for many of its applications, but it must be

extended to support more extensive computations

for parallel applications. Grid services from

Globus and Condor provide this capability, so we

need a way to modify existing JSF-based portlets

to work with these services. TeraGrid is one of

the very rich Grid service providers in the North

America. They support services ranging from

Globus [14] to Condor [15] and Myproxy [16].

To simplify this transition and to provide test

cases for our GTLAB framework, we decided to

combine the two efforts.

In this paper, we describe the application of

GTLAB to QuakeSim as a case study. In this case

backend applications run on TeraGrid and we

access these legacy applications with GRAM,

GridFTP, MyProxy services. We will show the

integration and implementation of Disloc and

Simplex portlets with GTLAB. We also evaluate

development time and runtime performance

results based on the tests that we conducted on

different geographical locations.

The remainder of the paper is organized as

follows. In the next section we give background

of QuakeSim components. Section 3 we review

Grid tag libraries followed by Section 4

QuakeSim portal architecture. Section 5 reviews

QuakeSim portal as case study. In the following

sections, we will evaluate the performance and

test results then we conclude with Section 7.

2. Background

Disloc [17] is used to calculate surface

displacements from earthquake faults. Disloc was

used for studying postseismic motions following

the 1994 Northridge earthquake, for rapid

response to the 2003 San Simeon Earthquake,

and for estimating surface deformation from the

2004 Great Sumatran Earthquake. The software

produces models of GPS and InSAR data. This

program is integrated into the QuakeSim

environment as a Web Service invoked by a

portlet client. A user can run a model and

generate a map of surface displacements. Disloc

is useful for assessing possible damage and for

comparing against seismologic results and

geodetic measurements of surface deformation. It

is used for interpretation of interseismic (between

earthquakes) strain accumulation, which is

important for hazard assessment. It is also used

for rapid response following earthquakes. Putting

the software into the web-services portal allows

for a wider user base, including students and

hazard agencies.

Disloc is not computationally demanding but it

serves as a prototype for more complex portal

applications, particularly GeoFEST mesh

generation and computational services. We thus

chose this application for our initial test case.

3. Grid Tag Libraries Overview

GTLAB provide a set of JSF tag libraries for

Grid portal development. This library

encapsulates atomic Grid operations as well as

multi-staged operations. We explain GTLAB

component model and its job management

capabilities in detail as follows.

GTLAB is intended to extend the Grid portlet

work of the Open Grid Computing Environments

(OGCE) project. As we have discussed

previously, GTLAB’s goal is to simplify the

process for making new Grid portlets. The basic

problem is that the portlet component model is

too coarse-grained for many science portals and

should be supplemented by finer grained

components. Individual OGCE portlets

encapsulate common Grid functionalities, but

they must be adapted by developers to specific

applications. Application developers have to

customize the portlets to comply with specific

3

needs of the gateway. Another aspect of OGCE is

that the capabilities are separated. Developers

need to assemble several portlets to get workflow

capabilities. All these efforts require substantial

effort of programming. The developers need to

reuse and modify some of the codes, view pages,

configuration and deployment descriptors.

However, in some cases the customization is

even more complex such as sharing the session

memory depends on the Tomcat servlet container.

Inter portlet communication is another tricky

point in case of trivial portlet applications.

GTLAB attempts to solve these problems by

enabling all capabilities within a web application

that requires minor customization on the view

pages. All other APIs, libraries, and deployment

descriptors will be the same. GTLAB architecture

provides an abstract and extensible interfaces and

APIs. The advantage of this approach is that new

tags and beans can be added by deriving the

interfaces. For example, Condor and Taverna

support can be added in the same way.

GTLAB provides several important features

for application developers. First, it provides

modular components (tags and beans) to

construct science gateway portlet pages. Second,

it represents Grid service clients using abstract

XML tags. Therefore, portal developers do not

need to understand underlying details of Grid

services. Finally, it provides a component model

for developing Grid portlets out of reusable parts.

Grid users typically must submit jobs to batch

queues where the jobs may wait for days or

longer before running, and even interactive jobs

possibly take a several minutes to finish. Thus

we must provide a call-back system that let jobs

run while allowing the portal to return control to

the user. Thus the GTLAB tags need to track the

jobs’ lifecycle and monitor their status,

displaying this information back to the user.

GTLAB creates a handler for every submitted job

by the users and displays status information using

JSF data tables. These data tables are fed by job

handlers that are saved in hash tables within the

user session. The visual design of the job

monitoring pages is left to application developers

so that the developers are able to modify tables

and to filter the table values. The users can

manage, stop, or cancel running jobs, after they

submit them. The job archiving is also tied to job

handlers. For example, users can keep good

samples, remove old jobs or failed jobs, and

otherwise organize their repository. The job’s

metadata features (submit time, status, finish

time, output location and input parameters) are

stored and can also be listed.

4. QuakeSim Gateway Architecture

QuakeSim portal architecture was previously

designed for Web services invocations in the

middleware. These portlets aggregate user

information and data through JSF interfaces and

the actions invoke matching Web services

methods. QuakeSim services utilize Apache Ant-

based services for managing executable

invocations, interacting with the operating system,

and controlling simple workflows. Ant build

scripts serve as templates for defining the

operations of a particular application service.

These server-side Ant build scripts can be

converted into portlet-side GTLAB XML tags.

Instead of altering QuakeSim service

interfaces synchronizing with Grid services, we

remove the Web services layer. Therefore we use

Grid services to invoke remote applications, to

make file transfers and to provide security.

However, we also need to allow implementing

workflows within the scope of QuakeSim scripts.

In other words, we are able to translate Ant

scripts to series of Grid service invocations that

are represented as graphs. This new approach has

advantages to the previous architecture. First,

there is no need to alter service interfaces when

the Ant scripts change. Second, in the previous

system, service clients cannot access the service

layer to change scripts. Therefore the clients have

to request required changes that involve

additional management efforts as well.

Enabling QuakeSim portlets such as the

Disloc interface to work with GTLAB requires a

few changes on the portlet pages. First of all we

preserve all JSF pages that collect information

from users such as input forms and parameters.

Next, we replace the JSF form page that invokes

QuakeSim Web services with Grid tags.

Therefore the embedded Grid tags that are

invisible to the end users will call Grid services

by using Grid beans. As a result of these simple

changes we gain from development time.

4

Figure 1 QuakeSim portal architecture with

Grid services invocations of TeraGrid nodes.

 As shown in the Figure 1, QuakeSim

architecture utilizes GTLAB to access TeraGrid

nodes. We customize portlet pages to connect

which TeraGrid nodes beforehand. Therefore end

users would not worry about TeraGrid

availability. It is also possible to involve the end

users in the node selection stage. In which case,

users have to be knowledgeable about the nodes.

In our design, users get their Myproxy credentials

before using any other Grid service. Then they

can use one of the services such as GRAM for

invoking applications or GridFTP to transfer files

from one server to another.

5. Case Study: QuakeSim Portal

QuakeSim portal is an environment to utilize

supercomputers, clusters or even desktops to

understand earthquakes. QuakeSim portal

previously built and production with different

technologies. In this work, we rebuild QuakeSim

portal with Grid portlets by integrating GTLAB.

Therefore, we choose GridSphere portal

framework to build QuakeSim portal. In the

building process we provide portlets for

QuakeSim applications including Disloc and

Simplex.

5.1. Disloc Portlets

Disloc models multiple dipping dislocations

(faults) in an elastic half-space. In the view of

portlet development, Disloc is an application that

we need to run by providing parameters and input

files. Disloc run on TeraGrid and the users either

can by using command-line tools or shell scripts.

But portal users can only access by using Grid

services to access TeraGrid in a secure way.

<o:multitask id="multi"

persistent="true"

taskname="#{resource.taskname}">

<o:myproxy id="mypr"

hostname="gf1" lifetime="2"

password="manacar" port="7512"

username="manacar"/>

<o:jobsubmit id="make"

arguments="/home/manacar/disloc-

work" executable="/bin/mkdir"

hostname="gf1.ucs.indiana.edu"

provider="GT2"

stdout="/home/manacar/tmp/out-

make"/>

<o:jobsubmit id="disloc"

arguments="/home/gateway/GEMCode

s/Disloc/input.txt

/home/manacar/disloc-

work/disloc.out"

executable="/home/gateway/GEMCod

es/Disloc/disloc"

hostname="gf1.ucs.indiana.edu"

provider="GT2"

stdout="/home/manacar/disloc-

work/out-disloc"/>

<o:dependency id="dep"

dependsOn="make" task="disloc"/>

</o:multitask>

Figure 2 Disloc portlet page contains multi-

staged jobs with DAG representation

GTLAB provides a client layer on top of Grid

services that is bridge to the portal users. In other

words, the portal users can access Disloc

transparently through portal user interfaces (i.e.,

Web forms). Not only using an application is

possible, but also a DAG could run the multiple

steps of Disloc such as in Figure 2 making a

directory on the file system to save output file,

then running Disloc application that depends on

the first task.

5

5.2. Simplex Portlets

Simplex is an inversion code based on Disloc.

Similar to Disloc, Simplex applications are run

by DAGs that describe order of the tasks and

their dependencies. Then JSF pages collect

parameters and information about the task to

submit it to TeraGrid.

Figure 3 Turnaround times starting from user form and portal server are shown.

Figure 4 User requests are processed in the Portal server that demonstrated in this picture.

6. Performance Analysis

GTLAB is intended to shorten Grid portal

development time, but we must also verify that

we do not introduce unacceptable portal

performance overhead. We performed run-time

tests to analyse GTLAB architecture to determine

if it is adding any overhead in the overall

processing of the requests. We want to show that

the QuakeSim architecture can tolerate the

negligible overhead. Our testing baseline and

6

testing framework is explained in great detail in

the next section.

The reusing Java bean libraries are the most

time consuming task of portlet development.

Constructing JSF pages synchronize with the

backing beans is another bottleneck. We also

automated building of portlets with Maven tool to

reduce customization time. While we integrate

GTLAB to construct JSF pages that we realized

that reduces a time consuming task. We

experienced these during the course of several

Grid portals including QuakeSim, and VLab.

6.1. Testing Setup

GTLAB testing server runs on Tomcat server

and these tests aim to measure turnaround time

on the server and client sides. Clients make

extensive number of requests to show

performance and thresholds. We have measured

elapsed time at the starting and at the ending of

requests in Figure 3. There are two testing cases:

i) Turnaround time for requests are initiated from

browser client by submitting web forms denoted

Tform. ii) Turnaround time for requests from portal

server denoted Tportal.

The client requests are conducted by using

HttpClient programming interfaces [18].

HttpClient provides interface to feed web form

parameters and submit buttons. We have

embedded JSF pages to make calls to GRAM

service to execute a simple Directed Acyclic

Graph (DAG). This example DAG first obtains

the Myproxy credential from Myproxy repository

and then submits simple UNIX commands. We

note we are not interested in testing the backend

Grid service performance. In order to get elapsed

time accurately, we have taken “submitted”

message into account as response from GRAM

service. Otherwise, the elapsed time may indicate

longer time to wait to job is completed because

GRAM job submissions are subject to be queued

on the GRAM service.

Figure 4 shows detailed scope of processes

when request comes to the portal server. At the

first stage, user requests (1) are parsed as using

JSF component model. The Grid tag components

embedded into JSF pages are extracted and then

the graph structure is constructed by preserving

the dependencies. Grid operations on the graph

are converted to Java CoG [19] stubs “taskgraph”

in (2). While CoG stubs are created, the handlers

of the tasks are stored in session memory (3).

Then the submit action is processed (4) that

invokes a Grid service. The submission status is

stored, as far as Grid service sends a response

message it may be a “submitted” which is for

success or “failed” which is for failure. Finally,

the response is directed to the user session on the

Web browser (7).

6.2. Run Time Evaluation

The test results have shown that GTLAB

framework has negligible overhead. We have

applied the test scenarios to get the accurate

overhead. We have done tests on TeraGrid nodes

including IU, NCSA and TACC. The average

overhead is less than 100 msec that is tolerable in

compare with 3-4 sec average HTTP request

processing time shown in Figure 5.

Figure 5 Performance of requests per user

Figure 5 shows the baseline performance

results per user. The plots indicate Tform

turnaround time. We intended to give an idea of

how long the requests take to be responded. In

this case, there are two plots; one is non-delayed

which show simultaneous requests per user.

Second, delayed plot shows the requests per user

with 10 msec interval time.

7. Conclusion

In this paper, we have reviewed QuakeSim

portal architecture that calls Web services in the

middleware. We have listed disadvantages of this

architecture that is hard to import on TeraGrid

7

nodes. Then we sketched our new architecture to

derive Grid services to invoke QuakSim

applications like Disloc and Simplex remotely. In

that architecture we are not only use Grid

services clients, but we also add an additional

reusable coding layer that makes Grid service

clients portable. As a result, we integrated

GTLAB within QuakeSim portlets.

We also analysed the performance of new

QuakeSim portal architecture as showing that

GTLAB layer add a negligible processing

overhead. The GTLAB processing overhead is

less than 100 msec in average which is tolerable

in case of processing HTTP requests. Therefore

we proved that GTLAB does not decrease

performance of QuakeSim portal. However it

reduces cost of development stage as advantage.

8. References

[1] Parker, J.W., Donnellan, A., Lyzenga, G., Rundle, J.B., and

Tullis, T. Performance Modeling Codes for the QuakeSim

Problem Solving Environment. in Proceedings of the

International Conference on Computational Science (Part

III). 2003: Springer-Verlag, Berlin.

[2] TeraGrid. [cited; Available from: http://www.teragrid.org/.

[3] Donnellan, A., et al., QuakeSim and the Solid Earth

Research Virtual Observatory. Pure and Applied Geophysics,

2006. 163(11): p. 2263-2279.

[4] F. Berman, G.F., T. Hey, (eds.), Grid Computing: Making

the Global Infrastructure a Reality. 2003, Chichester,

England: John Wiley & Sons.

[5] Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the

Grid: Enabling Scalable Virtual Organizations. International

Journal of High Performance Computing Applications, 2001.

15(3): p. 200-222.

[6] QuakeSim portal. [cited; Available from:

http://quakesim.jpl.nasa.gov/.

[7] Mehmet A. Nacar, Mehmet S.Aktas., Marlon Pierce,

Zhenyu Lu and Gordon Erlebacher, Dan Kigelman, Evan F.

Bollig, Cesar De Silva, Benny Sowell, and David A. Yuen,

VLab: Collaborative Grid Services and Portals to Support

Computational Material Science Concurrency and

Computation: Practice and Experience, 2007. 19(12): p.

1717-1728.

[8] Mehmet Nacar, Marlon Pierce, Gordon Erlebacher,

Geoffrey Fox, Designing Grid Tag Libraries and Grid Beans,

in Second International Workshop on Grid Computing

Environments GCE06 at SC06. 2006: Tampa, FL.

[9] Jetspeed. [cited; Available from:

http://portals.apache.org/jetspeed-1/.

[10] Jason Novotny, Michael Russell, Oliver Wehrens,

GridSphere: a portal framework for building

collaborations. Concurrency - Practice and Experience,

2004. 16(5): p. 503-513.

[11] Abdelnur, A., Chien, E., and Hepper, S., (eds.) Portlet

Specification 1.0. 2003 [cited; Available from:

http://www.jcp.org/en/jsr/detail?id=168.

[12] Craig McClanahan, E.B., Roger Kitain, Java Server Faces

Specification. Version 1.1.

[13] Apache Ant. [cited; Available from: http://ant.apache.org/.

[14] Globus toolkit. [cited; Available from:

http://www.globus.org.

[15] Douglas Thain, T.T., and Miron Livny, Condor and the

Grid, in Grid Computing: Making The Global

Infrastructure a Reality, A.J.G.H. Fran Berman,

Geoffrey Fox, Editor. 2003, John Wiley.

[16] Jason, N., T. Steven, and W. Von. An Online Credential

Repository for the Grid: MyProxy. in Proceedings of the

Tenth International Symposium on High Performance

Distributed Computing (HPDC-10). 2001.

[17] Okada, Y., Surface Deformation Due to Shear and Tensile

Faults in a Half-Space. BSSA, 1985. 75(4): p. 1135-

1154.

[18] HttpClient. [cited; Available from:

http://jakarta.apache.org/httpcomponents/httpclient-3.x.

[19] Gregor von Laszewski, I.F.J.G.P.L., A Java commodity grid

kit. Concurrency and Computation: Practice and

Experience, 2001. 13(8-9): p. 645-662.

